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This report contains the results of an analysis of the thermodynamic
properties of polymethyl methacrylate and methyl methacrylate. The
calculated values of the thermodynamic functions, entropy, enthalpy
and Gibbs free energy, are the first published values of these functions.
DLta of the type considered in this report are fundmntal properties of
the materials considered and are a contribution toward a basic under-
standing of these materials. This investigation vas derived from work
done under project NlO-a-1-56 as part of a general polymer investigation.
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INJTRODUCTION

1. A fundamental approach toward an understanding of the structure
and internal motions of a polymer is to investigate the temperature
dependence and magnitude of the specific heat, Cp, and of the related
thermodynamic functions over a temperature range extending down to
absolute zero. Changes in Cp and in the related functions entropy,
enthalpy, and free energy are indicative of changes in the structure
and internal motions of a polymer due to crystallization, glass
transitions, and melting. In addition, Cp measurements at low tempera-
tures are useful in testing the validity of the various theoretical
equations for the heat capacity of linear polymers, such as those
advanced by Tarassov (ref. (a)) and by Stockmayer and Becht (ref. (b)).

2. Additional thermodynamic data on bulk polymers are needed to
elucidate the nature of the glassy and crystalline states and to
explain the magnitude of the energy changes which occur when polymers
are heated or cooled, crystallized or melted. This report, which
is the fourth in a series (refs. (c), (d), (e)), presents the calculated
values of the entropy, enthalpy, and Gibbs free energy for polymethyl
methacrylate (PMNA) over the temperature range 0* to 260K. These
calculations are based upon published specific heat data (refs. (f) and
(g)), over the range 16* to 260*K. Also presented are the values of
the entropy, enthalpy, and Gibbs free energy for methyl methacrylate
monomer (MA) over the temperature range 0* to 210*K. The thermodynamic
function Cp/ vs. T, the difference Cp - Cv, and the nuber of classically
vibrating units per repeating unit of PA are also calculated and
discussed.

THE SPECIFIC HEAT OF POLBMET 1ETRACRYLATE

3. Specific heat of polymethyl methacrylate is of particular
interest because of the presence of pendent -CH• and -CO-OCR3 groups
along the main chain. It would be expected that the ester methyl
group in PMSA is more capable of different types of motion than is
the phenyl group in polystyrene (PS) and that the main chain methyl
grou in P(A will also contribute to the specific heLt. Thus, while
the molecular weight per repeating units of PMNA and PS are very
similar it would be expected that the differences in the vibrational
spectru produced by the various pendent groups would be reflected
by differences in the temperature dependence of the specific heats.

4. Specific heat of polymethyl methacrylate has been determined
by Sochava (ref. (g)) between 16" and 60K and by Sochava and
Trapeznikova (ref. (f)), between 60* and 260*K. Sochava and Trapenikova
(ref. (f)) have also determined the specific beat of methyl meth-
acrylate between 60" and 2100K, and Erdos, Jager and Pouchly (ref.
(h)) have determined its specific heat between 293* and 323K. The

1
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experimental values are given in Tables 1 and 2 and are presented
grqphcally in Figure 1.

5. pecific heat of polymetbyl methacrylate between 0 and 16"K
was obtained by extrapolating to absolute zero a plot of Cp/t vs. T2
of the exerimental data between 160 and 30OK. Specific heea of
methyl methacrylate between 00 and 600 was estimated by means of a
Debye function (ref. (i)) with eight degrees of freedom and OD of
151*K.

6. A plot of the observed low temperature Cp of PMMA and PS is
shown in Figure 2. It will be noted that the Cp of PNA increases in
a linear manner between 160 and 60*K while the Cp of PS exhibits a
non-linear temperature dependence. At lowr temperatures amorphous
linear polymers such as PWNA and PS should exhibit & linear increase
in Op providing that no interactions occur between polymer chains
and that the observed Cp is due to simple transverse vibrations. It
thus appears that at low temperatures PS has an aMitional Op super-
imposed upon a linear OC. TraWeikova and Nofanova (ref. 1))
have concluded that this additional Op is due to the rotation of
the phenyl group in PS.

7. While the specific heat data do appear to indicate that more
than simple vibrations of the main chain PS are taking place, these
data do not indicate Just what groups or types of vibrations are
involved. In the case of polymethyl methacrylate Sinnott (ref. (k))
has concluded that the ester and main chain methyl groups progressively
exhibit increased motion with increasing temperature. Motion of these
groups would contribute to the specific heat. Sochava (ref. (g)) has
recently pointed out that the higher specific hest of polymethyl
methacrylate at temperatures above 50*K, when compared vith polystyrene,
is due to the torsional vibrations of the methyl groups.

8. Warfield and Petree (ref. (1)) have recently shown that the
model, of Stockwayer and Becht (ref. (b)) using the analytical procedure
deveXoped by Starkwather (ref. (a)) can be applied to polymethyl
methocrylate and to polystyrene and that a nvuber of parameters
indicative of the structure of the polymer can be calculated from Op
dat*.

ENT1MPY, ZITAZYY AND GIBBS FM =MOr CAILMLATIONS

9. From Cp datas, values of entropy, enthalpy, and Gibbs free
energy of polymetbyl methacrylate and methyl mothacrylate have been
calculated at ten degree increments by nume1rcal integration and
are presented in Tables 1 and 2 and in Figure 3. The values were
obtained by evaluating the thermodynamic relations

ST- %.Ou 
(1)Cpd

2
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"T - %* a (2)

(FT - F,#,)- (Iff - % - T (ST -

where (ST -SOeK), (HT - HOK), and (FT - FOOK) are the entropy, enthalpy,

and Gibbs free energy relative to absolute zero.

10. Since polymethyl methacrylate is an amorphous polymer it must
be assumed that there vill be residual entropy at absolute zero. While
there is some evidence that this residual entropy will be swall (ref.
(n)), its magnitude is unknown.

11. At 260*K the entropy of polymethyl methacrylate was found to be

0.3375 cal/,s deg. or 33.75 cal/mole deg. Entropy of methyl methacrylate

at 210'K vas found to be 0.3788 cal/g, deg. or 37.88 cal/mola deg. and

at 210*K the entropy of polymerization was found by difference to be
9.63 caa/mole deg. At 260oK the enthalpy of polymet-yl methacrylate
was fouad to be 401. 1 cal/gm. and that of methyl methacrylate at 2109K

was 37.50 cal/,,. The Gibbs free energy of polymethyl methacrylate at

260*K was found to be -45-95 cal/p, and for metbyl methacrylate at
2o*K -4o.15 cal/g..

12. The free energy of polymerization, 6F, is calculated at 210K

by means of Equation (4).

AFa6 - MS(4)

Where &H in the heat of polymerization of )4A, 13.8 Kcal/mole (ref. (o))

and AS is the entropy of polymerization, -9.6 cal/mole deg. The free

energy of polymerization is thus found to be -n.8 Kcal/mole at 210°K.

This AF value may be slightly high since the bH was determined at 3000K.
The corresponding value for styrene is -9.4 Kcal/mo]e at 3O0K. These

values can be compared with the AF value of -14.3 Kcal/nole which has

been calculated by Dainton, et al. (ref. (p)) for the polymerization of
3,3 bis(chloromethyl) oxacyclobutane.

13. Plots of the thermodynamic functions vs. temperature for the
polymer are shovn in Figure 3. These functions change with temperature
In a mnner very similar to those of polystyrene (ref. (c)) and poly-
ethylene (ref. (d)).

3
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THE FWCTIO CP/T VS. T FM POLYM L METHACRYLATE

14. With and Dole (ref. (q)) have pointed out that the function
Cp/T vs. T is a constant if the specific heat rises linearly vith T
from a zero value at absolute zero. The function Cp/T measures the
rate at which the entropy increases with temperature or

dSý _q(5)

Dole and lu~wderlich (ref. (r)) have presented data for the magnitude
and temperature dependence of this function for a number of polymers
and long chain hydrocarbons. For many of the hydrocarbons a maximu
value of the function is observed at 60* to 70*K vhich, according to
Dole and Wunderlich (ref. (r)), is due to one or more modes of vibration
having the same frequency dominating at this temperature range. Warfield
and Petree have shown that polystyrene (ref. (c)), polyethylene (ref. (d)),
polyvinyl alcohol (ref. (e)), and polytetrafluoroethylene (ref. (d))
exhibit maxima at temperatures below 100*K.

15. A plot of Cp/q vs. T for polymethyl methacrylate is shown in
Figure 4. Data for plystyrene are included for purposes of comparison.
It will be noted that polymethyl methacrylate exhibits a maximum value
of this function between 70* and 100*K and that at higher temperatures
the magnitude of the function decreases. These maximum values of the CP/T
vs. T function are probably due to interactions between chains which
can best be described by a three-dimensional Debye continuum of acoustic
frequencies (ref. (i)).

VIBRATING UITS PER RPATINO UWIT OR POLYMEKYL WTCRYLATZ

16. Based upon a number of assumptions, Dole (ref. (a)) was
able to calculate the heat capacity per vibrating unit of polyethylene.
Eloying the same assumptions it is possible to estimate the number
of claslscaly vibrating units at 260*K in the P4A repeating unit
-C(Cn3) (COoci 3 )CN2 -. Three assumptions are employed. The first is
that the force constant of the C-H bond is so great that the methyl
and methylene groups will vibrate as a single unit; the seconi Is
that every group in the chain can vibrate harmonically with two degrees
of freedom along mutually perpendicular axes transverse to the cain
direction, and thirdly that longitudinal or stretching vibrations are
negligible at 2600K. If each vibrating unit vibrates vwth two degrees
of freedom, the expectead specific heat would be 2R or 3.9T cal/de. mole
per vibrating unit. However, these considerations apply to Cv, not Cp.

14
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17. The number of vibrating units per repeating unit is found by
dividing Cv, the heat capacity at constant volume, by 2R. Cv can be
calculated by means of Equation (6).

Cv, % [ 1 d2 (6)

Where Cp is the observed heat capacity of PMAA at 260K, 0.267 cal/deg

or 26.7 cal/mole deg.; V is the sound velocity, 2320 N/see (ref. (t)); d

is the cubic coefficient of expansion, 2.06 x 10-4 per deg (ref. (u)); and
J is the mechanical equivalent of heat, 4.184 x 10-7 erg/cal. Cv is found
to be 0.253 cal/deg. S.. or 25.3 cal/mole deg. and Cp - Cv is 0.014 Cal/S.

deg* Based uon these values the number of vibrating units per repeating
unit of Pi4A at 260oK is 6.38.

COWcLSIC1RS

18. Considerations of data presented in this report have led to the
following conclusions:

a. The low temperature specific heat of polymethyl methacrylate
and polystyrene exhibit small but significant differences which can be
attributed to the motion of pendent side groups.

b. Cp - Cv, for polymethyl methacrylate at 260*K is 0.014 cal/deg. S.

c. The number of vibrating units per repeating unit of PMtA is
calculated to be 6.38.

300I4NDATIONS

19. It iv ecommended that calorimetric measurements be made to
obtain low temperature specific heats of many of the common monomers
and polymers. Data of this type would permit calculation of the
entropy, enthalpy, and free energy of these systems and the changes in
these values due to polymerization. A ccmplete thermodynamic investi-
gation of the factors that make up the observed specific heat over a
broad temperature range would be of great importance toward a more
complete understanding of the structure and internal motion of a polymer.

5
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TABLE 1

SPECIFIC HEAT, ZRTROPY, RMITAIPY,
AND GIBBS FMEE FRERGY OF METHYL METEACRYLATE

Temperature Specific Beat, Cp(i) ST - SO.K T- - -(FT -O.K)

Sce./deg. gm. cal/deg.gm. cal/gm. cal/gi.

i.0 (0.004) 0.0021 0.013 0.002
20 (0.027) 0.0153 0.133 0.097
30 (0.059 0.0372 0.562 0.368
4o (0.084) 0.0616 1.288 0.868
50 (o. o3) 0.0856 2.242 1.610
60 o.1n8 0.1079 3.352 2.582
70 o.142 0.1298 4.662 3.775
80 0.157 0.1512 6.162 5.178
90 0.170 0.1717 7.802 6.792
100 0.1.81 0.1912 9.552 8.162
no 0.191 0.2097 u.4o 10.62
120 o.2o4 0.2276 13.37 12.80
130 0.217 0.2452 15.•8 15.17
1140 0.230 o.26214 17.71 17.71
150 0.244 0.2793 20.08 20.42
160 0.256 o.2960 22.58 23.30
170 0.269 0.3124 25.20 26.34
180 0.285 0.3287 27.97 29.55
190 0.305 0.3451 30.92 32.92
200 0.328 o.3617 34•.08 36.45
210 0.358 0.3788 37.50 40.15

(1) Data of Sochava (60" to 210*C)

6
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TABLE 2

SECIFIC .EATp, EMOPY, TIAIFY,
AND GIBBS FM ,MERGY OF POLYK Y M!ETNACRYLATE

Temperature Specific Beat, cp(1) s(-So* R'Po* "(FT'FOOK)

______ cal/deg. gin. Ca1/deg.gi. ca/s cal/rn.

10 (0.010) 0.0on2 0.070 0.010
20 0.019 0.0246 0.190 0.179
30 0.035 0.0384 0.460 0.500
4o 0.051 0.0529 0.890 0.962
50 0.066 0.0675 1.470 1.568
60 0.083 o.0823 2.210 2.316
70 0.098 0.0977 3.130 3.220
80 0.312 0.1127 4.180 4.272
90 0.126 0.1277 5.380 5.474

100 0.139 o.1425 6.710 6.828
3o0 o.149 0.1569 8.150 8.324
120 0.158 0.1708 9.680 9.962
130 0.166 0.1843 11.30 .74
140 0.176 0.1975 13.02 13.64
150 0.186 o.2104 14.83 15.68
160 0.194 0.2231 16.73 17.85
170 .202 o0.2356 18.72 20.15
180 0.210 0.2478 20.79 22.58
190 0.218 o.2597 22.93 25.1
200 0.226 0.2709 25.15 27.68
210 0.235 o.2825 27.47 30.44
220 0.244 0.2939 29.86 33.33
230 0.250 0.3051 32.34 36.x1
240 0.255 o.3161 34.87 39.41
250 0.262 0.3269 37.46 42.63
260 0.267 0.3375 40.11 45.95

(1) Data of sochava (16" to 2600K

7
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